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In the last lecture

We learned about propositional logic and a way of encoding the
inference rules of proposition called natural deduction.



In this lecture

We shall continue the trend of the last lecture:

• We shall introduce the inference rules of disjunction,
contradiction and negation.

• We shall talk about the law of excluded middle and the law of
double negation.

We shall also talk about the semantic aspects of (classical)
propositional logic:

• We shall introduce the truth tables of propositions.

• We shall use the truth tables to talk about the meaning of
propositions.
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Overview

1 Natural deduction for disjunction and negation

2 Using logic in mathematical reasoning



Recall: New propositions from the old

• Recall that given propositions P and Q, we can make the following new
propositions:

Proposition Notation

P and Q P ∧ Q

P or Q P ∨ Q

P implies Q P ⇒ Q

P if and only if Q P ⇔ Q

not P ¬P

• Therefore, if P : Prop and Q : Prop then P ∧ Q : Prop, P ∨ Q : Prop,
P ⇒ Q : Prop, P ⇔ Q : Prop, ¬P : Prop, ¬Q : Prop, etc.
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Few things to note

• Note that we use upper-case letters to denote propositions.

• P ⇒ Q: if P then Q, or P is sufficient for Q, or Q is necessary from P .

• ¬P : it is not the case that P .



Recall that

In the examples of natural deduction which we did in the last lecture, we learned
to think

• what the formulas say,

• which rule of inference is invoked at each inference step, and

• which hypotheses are canceled at each stage.

If we look at any node of the tree, what has been established at that point is that
the claim follows from all the hypotheses above it that haven’t been canceled yet.
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A natural deduction proof has the shape of a “tree” in which the nodes are
decorated with propositions. The proposition occurring at the root of the tree is
the conclusion, whereas the proposition at the leaves of the tree are its
assumption.
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The rules of inference for disjunction

The disjunction operator is the logical
operator ∨, defined according to the
following rules:

• If P is true, then P ∨ Q is true;

• If Q is true, then P ∨ Q is true;

• If P ∨ Q is true, and if R can be
derived from P and from Q, then R

is true.
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• If P is true, then P ∨ Q is true;

• If Q is true, then P ∨ Q is true;

• If P ∨ Q is true, and if R can be
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is true.

P ∨ Q represents “P or Q”.
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Example.
We show that `

(P ∨ Q)⇒ R
´
⇔ (P ⇒ R) ∧ (Q⇒ R)

is a tautology.



The rules of inference for negation

A contradiction is a proposition that
is known or assumed to be false.

We will use the symbol ⊥ to represent
an arbitrary contradiction.
The expression ¬P represents “not P ”
(or “P is false”).

The elimination rule
⊥ ⊥E
P



The rules of inference for negation

A contradiction is a proposition that
is known or assumed to be false.
We will use the symbol ⊥ to represent
an arbitrary contradiction.

The expression ¬P represents “not P ”
(or “P is false”).

The elimination rule
⊥ ⊥E
P



The rules of inference for negation

A contradiction is a proposition that
is known or assumed to be false.
We will use the symbol ⊥ to represent
an arbitrary contradiction.
The expression ¬P represents “not P ”
(or “P is false”).

The elimination rule
⊥ ⊥E
P



The rules of inference for negation

The negation operator is the logical
operator ¬, defined according to the
following rules:

• If a contradiction can be derived
from the assumption that P is
true, then ¬P is true;

• If ¬P and P are both true, then a
contradiction may be derived.

The expression ¬p represents “not P ”
(or “P is false”).

The introduction rule
1

[P ]
...
⊥

1 ¬I¬P

The elimination rule
¬P P ¬E⊥



In order to prove a proposition P is false (that is, that ¬P is true), it suffices to
assume that P is true and derive a contradiction.



Example.
Construct a proof of `

(P ∨ Q) ∧ ¬Q
´
⇒ P

1
[
`
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´
]
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Example.
Show that

P ⇒ ¬¬P

is a tautology.
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Example.
Show that 0 is the only real solution to the equation

x +
√
x = 0 :

x +
√
x = 0

⇒ x = −
√
x rearranging

⇒ x2 = x squaring

⇒ x(x − 1) = 0 rearranging

⇒ x = 0 or x = 1

Now certainly 0 is a solution to the equation, since 0 +
√
0 = 0 + 0 = 0.

However, 1 is not a solution, since 1 +
√
1 = 1 + 1 = 2.
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...

Hence it is actually the case that, given a real number x , we have

x +
√
x = 0 ⇔ x = 0

Checking the converse here was vital to our success in solving the equation!

Note that the formal expression of our reasoning is of the form`
(P ∨ Q) ∧ ¬Q

´
⇒ P :
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Example

Proposition.

Let n ∈ Z. Then n2 leaves a remainder of 0 or 1 when divided by 3.

The proof is constructed using the argument by cases which is exactly the
elimination rule of disjunction (from Definition 1.1.12).

p1 ∨ p2 ∨ p3

[p1] 

q

[p2] 

q

[p3] 

q
(∨e)q

Determine what p1; p2; p3 and q are, and construct the proof.
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Truth Tables

· · ·



The End

Thanks for your attention!

Time for your questions!
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